Evapotranspiration from Tropical Peatland of Sarawak, Malaysia

Kevin K Musin¹, Joseph W Waili¹, Edward B Aeries¹, Wong Guan Xhuan¹, Ryuchi Hirata², Lulie Melling¹

> Sarawak Tropical Peat Research Institute, Sarawak, Malaysia
> National Institutes for Environmental Studies, Tsukuba, Japan

Sarawak Tropical Peat Research Institute

Tropical Peatland:

- Carbon rich ecosystem
- It an ecosystem with evapotranspiration dynamic less understood

Characteristics:

- Acidic
- Thick organic soil
- Micro-topography
- Waterlogged

Background of Study

 Evapotranspiration (ET) is important process in water cycle particularly in peatlands ecosystem.

- Vegetation and hydrological changes caused by human activity and extreme climate may significantly alter the ET from the ecosystem.
- von Randow *et al.* (2004) reported that the conversion of tropical peat land to pasture decreased ET in Amazonia

Study Objectives

- 1. To quantify the evapotranspiration from three different ecosystems (PSF, SF, OP).
- 2. To determine the environmental response of evapotranspiration.
- **3**. To scrutinize the effect of evapotranspiration toward the changes in groundwater level.

Terminologies

Study Site

- 3 Different Ecosystems
 - Oil palm plantation, SBW
 - Secondary peat swamp forest, CMC
 - Primary peat swamp forests, MLM

Sarawak, Malaysia

Site Description

Site	SBW	СМС	MLM
Forest type	Oil palm (Original vegetation: Mixed Peat Swamp Forest)	Padang Paya Swamp Forest (logged-over PSF)	Alan Batu Swamp Forest
Canopy height (in 2011)	~ 8 m	~ 25 m	~ 30 m
Peat depth	~ 13 m	~ 10 m	~ 10 m

- Tropic rainforest climate (moderately hot-very humid-receive substantial rainfall)
- Peat surface is relatively flat

Evapotranspiration Measurements

Wind Sentry

Rain gauge

Solar Panel

T & RH probe

- Measurement of vertical transfer of water vapor by convective motion.
- Directly measure flux by sensing properties of eddies as they pass through a measurement level on an instantaneous basis.

Bulk Parameters

To interpret the seasonal variation & environmental response of
ET

Seasonal Variation - SBW

- The GWL was stable at -0.4 to -0.7 m
- GWL decreases due to low PT for year 2014

٠

- VPD increased significantly during dry season for all years due to low PT
- ET increase increased during dry season for all year except 2011 due to low VPD

Seasonal Variation - CMC

The GWL were low during dry season (Apr - Oct)

 Significant low VPD in Dec 2013 due to high PT

• ET was low in Jan to Mar for 2014

Seasonal Variation - MLM

The GWL drop during dry season for 2012, 2012 & 2013

 Significant low VPD in Dec 2013 & Jan 2014 following large PT in Dec 2013

 Substantial low ET in 2013 due to low PT during dry season

Environmental response of ET - SBW

Environmental response of ET - CMC

 G_s, Ω & VPD increasing during dry season & decrease during wet season

 VPD increase during dry season due to low precipitation has resulted of decreasing in the relative humidity.

Environmental response of ET - MLM

Annual Evapotranspiration

Year	Evapotranspiration (ET) mm yr ⁻¹				
	SBW	CMC	MLM		
2011	1044	936	1097		
2012	925	943	1343		
2013	630	1289	758		
2014	805	1201	1264		
Mean ± SD	851 ± 177	1093 ± 180	1116 ± 259		

- A negative linear relationship for all sites.
- SBW has low r² compare to CMC and MLM
- Highest r² observed for MLM site (r²=0.65).

Comparison with other studies

Ecosystem type	ET	Р	ET/P	References
	mm yr ⁻¹	mm yr ⁻¹		
Oil palm plantation	851 ± 177	1991 ± 177	0.43	
Secondary PSF	1093 ± 180	2152 ± 299	0.51	This study
Primary PSF	1116 ± 259	2090 ± 895	0.53	
Undisturbed PSF	1636 ± 176		0.67	
Disturbed PSF	1553 ± 53	3732 + 281	0.63	Hirano et al. (2015)
Disturbed & Burn PSF	1374 ± 75	5752 - 201	0.56	
Tropical rainforest in Peninsular Malaysia	1287 ± 52	1865 ± 288	0.69	Kosugi et al. (2012)
Bornean tropical rainforest	1323 ± 74	2600 ± 272	0.51	Kume et al. (2011)
Tropical forest in Asia and Oceania region	1255 ± 329	2557 ± 1057	0.49	Komatsu et al. (2012)

Conclusions

- The unadjusted ET for three different ecosystem SBW (oil palm plantation), CMC (secondary forest) and MLM (primary forest) was 851± 177, 1097± 180 and 1116±259 mm yr⁻¹
- The decreasing of stomatal conductance (G_s) during the dry season because of water stress effect the stomatal closure due the decreasing of GWL and increasing of VPD.
- SBW ET was primarily controlled by Rn since the relationship between ET and GWL was weak
- ET for CMC and SBW was mainly control by the GWL since the relationship between ET and GWL was strong

Thank You Very Much for Your Attention

